

Introduction

Development of accuracy-based calibrators in biological matrices for clinical diagnostic applications requires reference measurement calibrators and materials with high accuracy and sensitivity. Testosterone presents a unique challenge with the wide range of endogenous levels across female, male and age-based patient populations. A method for quantitation of Testosterone across the entire therapeutic range from 20 pg/mL to 20,000 pg/mL in serum by Liquid Chromatography Mass Spectrometry (LC-MS/MS) was developed and validated. Given the 1000-fold range of the calibrators the analysis is divided into three groups. Data presented will provide evidence on the quality of the product and show that the Testosterone calibrators will remain stable under normal use and recommended storage conditions.

T-107 Calibrator Kit								
Low pg/mL			ium mL	High pg/mL				
T-096	20	T-100	350	T-103	5000			
T-097	40	T-101	525	T-104	7500			
T-098	90	T-102	1500	T-105	20000			
T-099	175							

Study Design

The method consists of Value Assignment Calibrator Curves that are used to quantitate testosterone in serum calibrators with the addition of a known amount of internal standard (Testosterone- 13 C₃). Based on a NIST method, a multi-step liquid-liquid extraction of testosterone from the serum calibrators followed by analyzation by LC-MS/MS was performed. Data was analyzed with Agilent MassHunter Workstation Quantitation Software. NIST SRM-971 was used as quality control samples during all stages of testing.

LC-MS Parameters					
HPLC System	Agilent 1290				
MS/MS System	Agilent 6490				
Mobile Phase A	0.1% Formic Acid in Water				
Mobile Phase B	0.1% Formic Acid in Acetonitrile				
Column	Thermo Hypersil Gold C-18, 3µ, 3 x 50 mm				
Gas Flow Temp (°C)	290				
Gas Flow	14				
Nebulizer Pressure	45				
Sheath Gas Temp (°C)	400				
Sheath Gas Flow	12				
Capillary Voltage	3000				
Vcharging	1500				
Positive High Pressure RF	100				
Positive Low Pressure RF	120				

Testosterone LC Gradient (Flow Rate 0.700 mL/min)						
Time	0.0	0.5	16.0	16.1	19.1	
% A	90	90	5	90	90	
% B	10	10	95	10	10	

Native and Labeled Testosterone MRM Transitions								
Compound Name	Precursor Ion	Product Ion	CE (volts)					
Testosterone	289.5	97	20					
Testosterone	289.5	109	28					
Testosterone- ¹³ C ₃	292.5	100	20					
Testosterone- ¹³ C ₃	292.5	112	28					

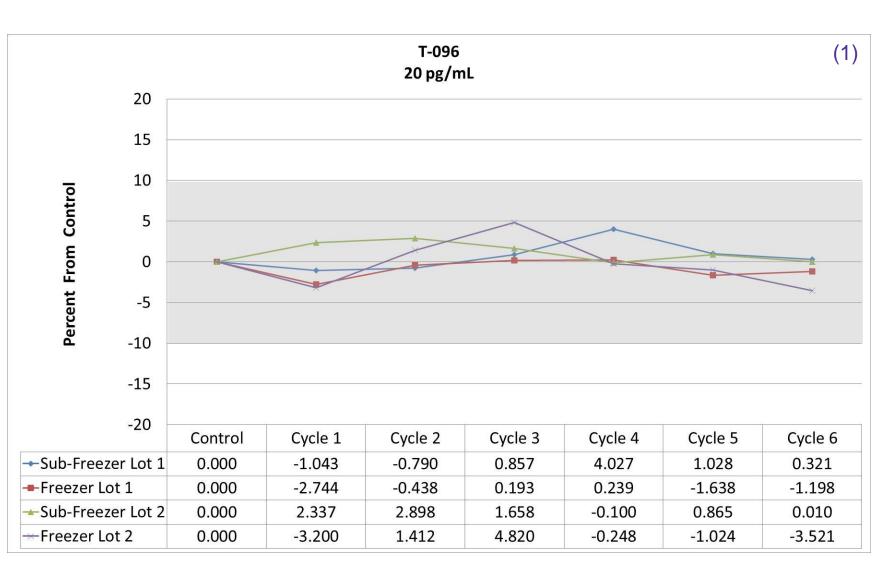
Add Ammoniun

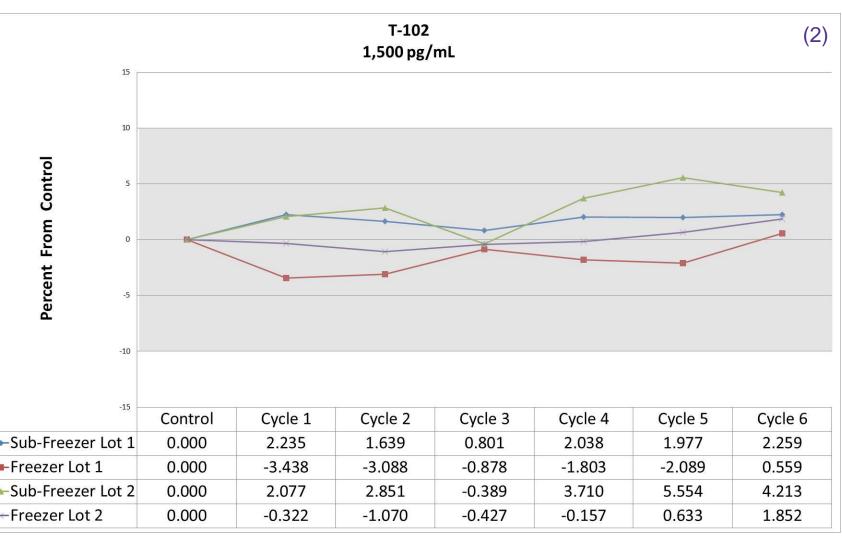
Acetate

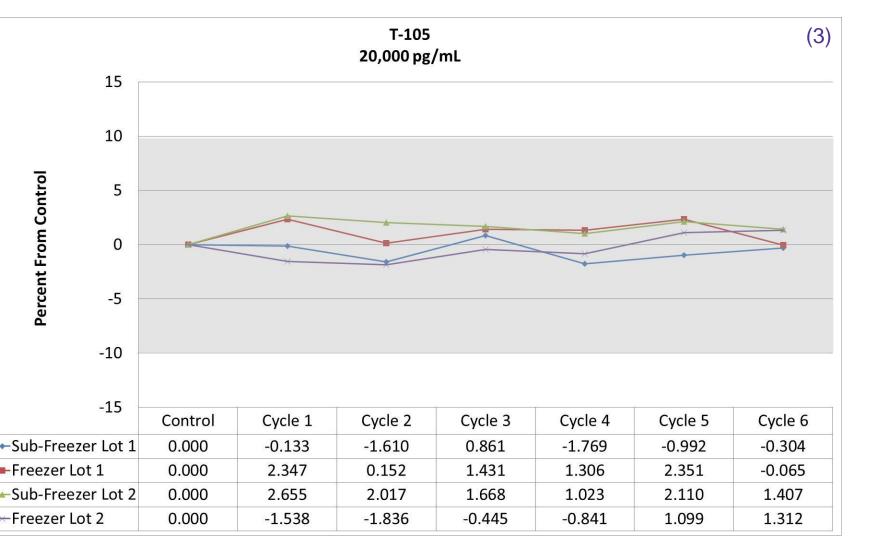
Spike with

amount of IS

Workflow


Veigh out 1 mL


of Serum


Freeze-Thaw

- The effect of repeated freezing (at -20° C and -80° C) and thawing (at room temperature) on two lots Testosterone calibrators was studied.
- Fourteen T-107 Calibrator kits were placed at sub-freezer and freezer for each lot.
- T-107 calibrator kits were removed from their storage condition at each time interval, thawed, uncapped for approximately two minutes then closed again and placed back into the original storage condition.
- No significant changes were found over six cycles of freeze-thaw in at any level of calibrator.
- Figures 1, 2, and 3 are representative of analysis at low, medium, and high concentrations during freeze/thaw experiments.

Stress Conditions	Control	24 Hrs	48 Hrs	72 Hrs	96 Hrs	120 Hrs	144 Hrs
Sub- Freezer	14	12	10	8	6	4	2
Freezer	14	12	10	8	6	4	2

Ammonium

Carbonate

Extract 2X with

Hexanes

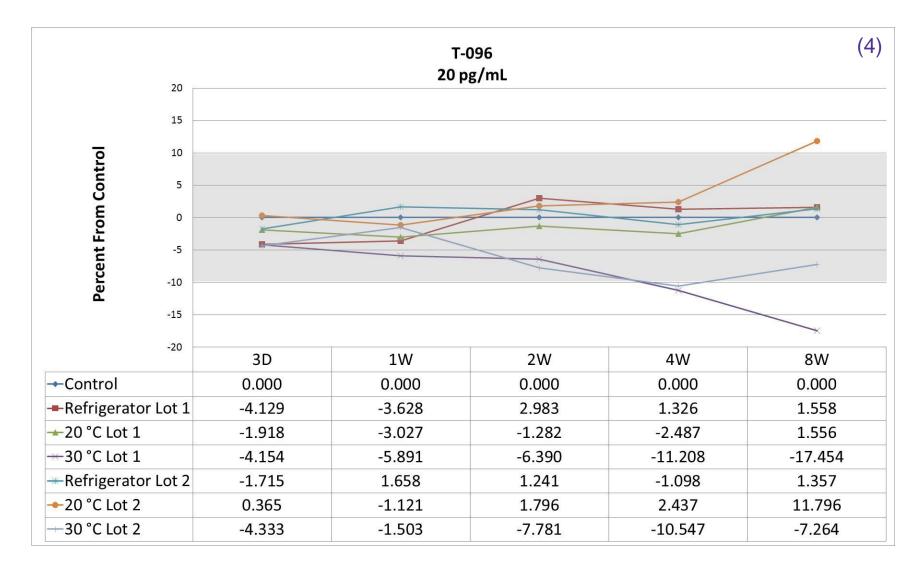
Evaporate to

Dryness

Extract 2X wit

Evaporate to

Dryness


ncubate for 2


hours

Temperature Stress

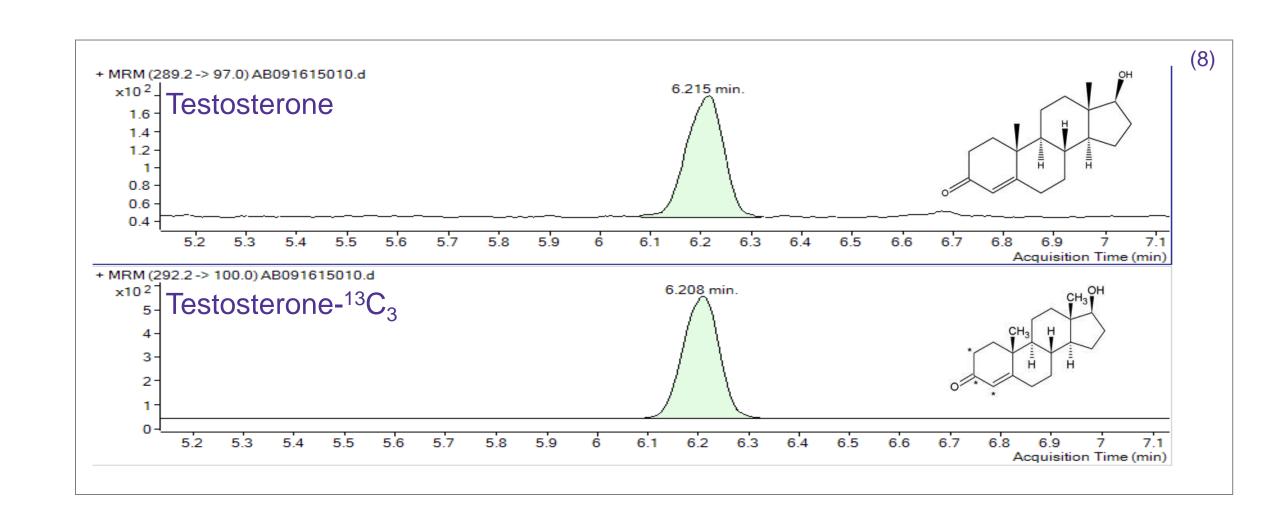
- Ten T-107 kits were placed in each of the stress conditions and four T-107 kits were placed in the freezer as a control.
- At each time interval two kits were removed from each of the storage conditions along with two controls.
- Refrigerate and 20° C conditions concentrations remained within 10% of the original value through 8 weeks and were consistent with control samples.
- Significant changes were observed at 30° C over an eight week period.
- Figures 4, 5, and 6 are representative of analysis at low, medium, and high concentrations during temperature stress experiments.

Stress Conditions	3 Days	1 Week	2 Weeks	4 Weeks	8 Weeks
Freezer (Control)	N/A	2	2	2	2
Refrigerate (2°C-8°C)	2	2	2	2	2
20 °C	2	2	2	2	2
30°C	2	2	2	2	2

LC/MS Agains

Appropriate VAC

──> Data Analysis


Real Time Stability

- Nine T-107 kits from each lot were placed at -20° C. Three replicates at each time intervals were analyzed.
- Long-term stability testing was found to be consistent with accelerated stability findings.
- Results are within the expanded uncertainties of certification at time 0 and stability testing.
- Expanded uncertainties for the products are approximately
 4.2% and included preparation, certification and homogeneity.
 (95% Confidence Interval)
- Expanded uncertainty of LC-MS method is 4.1%.
- Representative example shown in Figure 7.

Chromatography

Chromatography throughout the analysis had an elution time of approximately 6.2. Separation and detection were reproducible and robust throughout the project.

Summary

- Accuracy-based calibrators for testosterone were manufactured in accordance with ISO 17025 and ISO Guide 34.
- •Data obtained proved to be consistent with control samples with little to no degradation and fell well within specifications.
- Forced degradation studies provide ample information to conclude that Testosterone calibrators are stable under most conditions.
- Ongoing real time stability indicates no significant changes outside of analytical variability.

Corresponding Author: <u>Linda.Nagore@Cerilliant.com</u>